

Lithium Drill Targets Identified Near Mt Holland Lithium Mine Mt Holland Lithium Project

Highlights

- Central lithium zone of 900m length defined on RGL's Mt Holland Lithium Project
- Orientation of the lithium zone similar to other known deposits in the area
- Located 3km SE of Covalent Lithium's Mt Holland lithium deposit
- Multiple other individual anomalies also identified for lithium
- Trial deep ground penetrating radar (DGPR) completed and results due shortly
- Drilling approvals underway with maiden drilling planned for this quarter
- Expanded geochemical program initiated to cover the remaining tenement area

Riversgold Limited (ASX: RGL, Riversgold or **the Company**) is pleased to provide this update on very positive lithium soil geochemical results at the Mt Holland Lithium Project (the **Project**), located immediately adjacent to the globally significant Mt Holland Lithium Mine (Figure 3), currently under development by Covalent Lithium, the joint venture between Wesfarmers Limited and Sociedad Química y Minera de Chile S.A. (**SQM**) in the Marvel Loch region of Western Australia.

Expanded geochemical sampling on the southern portion of the Mt Holland Project tenement has defined a clear 900m long lithium index anomaly (Figure 1), with multiple anomalies for lithium identified (Figure 2). The nominal 100 metre spaced soil sampling program results will be merged with DGPR results that are due shortly, to assist with further developing drill hole design. A Program of Work (**PoW**) is to be submitted shortly, with heritage notifications, with drilling aimed to be underway this quarter.

Riversgold Chief Executive Officer, Julian Ford, said:

"These are the first exploration results generated from the ground immediately to the east of Covalent Lithium's Mt Holland Lithium Mine since Kidman in 2016. We can definitely see areas that are highly anomalous for lithium and none of the targets have been historically drilled. The results from this program are an excellent start, as we look to get on the ground and start drilling this quarter. 2023 will be an exciting time at Riversgold, with drilling planned at Mt Holland, Tambourah and Mt Weld this quarter."

Figure 1: Targets interpreted based on Contoured Pegmatite Index (Li+Cs+Rb+Sn+Ta) data.

The Pegmatite Index of Li+Cs+Rb+Sn+Ta is generated by factoring each element to have an equal weighting, and shows the central area has a major pegmatite dyke trending NNW with possibly another starting to appear in the NE corner. When all spot target zones generated by individual elements are overlain on the Pegmatite Index, they define a strong coherent target zone in the central portion of the sampled area between the two dolerite dykes.

Figure 2: Targets interpreted based on Contoured Lithium (Li) data.

The contour plot of Li shows numerous spot highs to which inferred pegmatite dyke orientations have been added. Two clear low zones are identified; one in association with a mapped dolerite dyke with the second inferred to represent an unmapped repeat. The pattern of spot highs is typical of the response of "mineralisation" seen in sandplain regolith.

Figure 3: Location of E77/2784 relative to Covalent Lithium's Mt Holland Lithium Mine.

Notes to Figure 3:

- 1. Rio Project: results here reported by Zenith (ZNC:ASX) on 17 September 2022. Additional results reported on 16 November 2022 but not reported here.
- 2. See Kidman Resources Limited's ASX announcement of 19 March 2018 and scheme booklet released on 4 July 2019.
- 3. Giant Prospect: see ASX:MZN release of 20 December 2016.

Background Information

Riversgold has an agreement to acquire an 80% interest in the lithium rights to Exploration Licence E77/2784 (see ASX: 18 November 2022). The tenement lies immediately adjacent to the globally significant Mt Holland Lithium Mine, currently under development by Covalent Lithium, the joint venture between Wesfarmers Limited and Sociedad Química y Minera de Chile S.A. (**SQM**).

Kidman Resources, which discovered the Earl Grey lithium deposit at Mt Holland in 2016, originally identified an extension of the Bounty gold mine tailings storage facility (**TSF**) as the preferred tailings dam site for the Mt Holland Lithium Mine. However, sterilisation drilling between the Bounty gold open pit and the TSF in late 2017 identified several significant lithium intersections, including 17.6m at 1.67% Li₂O from 146m¹, showing that lithium mineralisation extends east and potentially into E77/2784.

Publicly available drilling data shows that a RAB hole drilled in 1993 by Normandy Exploration, targeting gold east of the Bounty gold mine, intersected 1.0m of pegmatite logged from 13.0m to 14.0m (Figures 1 and 2). The geological log description for the interval from 28.0 to 41.0m can be interpreted as potentially being a weathered expression of the same pegmatite, which suggests the possible presence of thick pegmatites within E77/2784.

Kidman carried out geochemical sampling for lithium and cleared gridlines for a major drill program in 2016. However, the company's entire exploration efforts were soon diverted to resource definition and extension at the Earl Grey deposit and the exploration targets east of Bounty, now under Riversgold's tenure, were never followed up.

A 2019 independent expert report from CSA Global commissioned by Kidman also identified the possibility for the Earl Grey pegmatite to continue at depth under the E77/2784 tenement. This target, newly coined "MHG" by Riversgold, is interpreted to lie at a depth of ~300m below surface and could constitute an extension of the Earl Grey lithium deposit.

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

Julian Ford Chief Executive Officer

- P: (08) 6143 6747
- E: jford@riversgold.com.au

David Lenigas Executive Chairman

P: +44 (0) 7881825378

E: <u>dlenigas@riversgold.com.au</u>

¹ ASX:KDR, 19 December 2017; "Exploration drilling at Bounty highlights potential for a new lithium discovery at the Mt Holland Project"

Competent Person's Statement

The information in this document that relates to new exploration results is based on information compiled or reviewed by Edward Mead, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Mead is a Director of Riversgold Ltd. Mr Mead has sufficient experience that is relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mead consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The Company confirms that there have been no material changes to the exploration results previously reported in accordance with Listing Rule 5.7 on 18 November 2022.

About Riversgold

Riversgold Ltd is an ASX-listed exploration company with a lithium-focused strategy in the worldrenowned Pilbara and Yilgarn cratons in Western Australia. In 2022, the Company acquired a suite of four lithium-prospective exploration tenement applications covering 164km² in the Pilbara region. The key Tambourah Project is underexplored and has the potential to host a major lithium-caesiumtantalum system much like the nearby Pilgangoora and Wodgina deposits. Further, the Company has acquired a tenement package of 301.2km² prospective for lithium in the Southern Cross-Marvel Loch region of Western Australia including a tenement immediately bordering the Mt Holland Lithium Project (189Mt at 1.5% Li₂O). The Riversgold portfolio also offers exposure to gold and nickel through its large landholding at the Kurnalpi Project in the Yilgarn.

APPENDIX 1

Table 1: Geochemical Data and sample location

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00081	100mEx100mN	763000	6444848	2	4.5	35	6	54.2	<10	1
MTH00082	100mEx100mN	763101	6444847	0.5	2.3	24	5	37.6	<10	0.9
MTH00083	100mEx100mN	763200	6444847	0.5	2.9	22	4	30.1	<10	0.8
MTH00084	100mEx100mN	763300	6444848	0.5	1.2	21	4	21.8	<10	0.7
MTH00085	100mEx100mN	763399	6444849	0.5	1.5	15	4	9.5	<10	0.7
MTH00086	100mEx100mN	763501	6444850	1	1.8	25	6	12.6	<10	0.8
MTH00087	100mEx100mN	763598	6444859	1	1.2	15	5	9.2	<10	0.8
MTH00088	100mEx100mN	763000	6444748	2	2.1	17	5	51.6	<10	0.6
MTH00089	100mEx100mN	763102	6444747	0.5	3.3	24	6	46	<10	0.7
MTH00090	100mEx100mN	763200	6444752	1	1.4	22	5	19.7	<10	1
MTH00091	100mEx100mN	763300	6444748	0.5	0.6	19	6	12.6	<10	0.7
MTH00092	100mEx100mN	763400	6444750	1	0.8	13	6	7.8	<10	0.6
MTH00093	100mEx100mN	763501	6444751	1	0.9	14	8	8.3	<10	0.8
MTH00094	100mEx100mN	763599	6444748	1	1.1	16	6	9.1	<10	0.7
MTH00095	100mEx100mN	763000	6444647	0.5	0.4	14	8	10.6	<10	0.8
MTH00096	100mEx100mN	763102	6444651	0.5	0.8	18	6	9.8	<10	0.8
MTH00097	100mEx100mN	763200	6444653	0.5	0.9	13	7	8.8	<10	0.7
MTH00098	100mEx100mN	763302	6444649	0.5	0.6	12	7	6.8	<10	1
MTH00099	100mEx100mN	763399	6444645	0.5	0.7	12	7	8.8	<10	0.7
MTH00100	100mEx100mN	763496	6444653	2	0.9	18	5	8.4	<10	2.4
MTH00101	100mEx100mN	763600	6444649	1	0.9	10	5	7.2	<10	0.7
MTH00102	100mEx100mN	763000	6444550	1	0.5	16	6	7.8	<10	0.5
MTH00103	100mEx100mN	763099	6444548	0.5	0.8	14	7	7.5	<10	1.2
MTH00104	100mEx100mN	763199	6444546	2	0.5	17	5	8.2	<10	0.8
MTH00105	100mEx100mN	763299	6444545	1	0.6	15	7	7.2	<10	0.9
MTH00106	100mEx100mN	763399	6444547	0.5	2.6	26	6	21.1	<10	0.6
MTH00107	100mEx100mN	763497	6444550	1	2.6	30	8	48.1	<10	0.9
MTH00108	100mEx100mN	763600	6444550	0.5	1.1	13	21	10.4	<10	14.4
MTH00109	100mEx100mN	763000	6444450	1	0.4	13	5	5.2	<10	0.7
MTH00110	100mEx100mN	763101	6444450	0.5	0.7	22	5	6.2	<10	0.8
MTH00111	100mEx100mN	763201	6444449	0.5	2.2	23	5	31.3	<10	0.6
MTH00112	100mEx100mN	763300	6444450	0.5	1.4	18	8	16	<10	0.7
MTH00113	100mEx100mN	763402	6444452	0.5	2	14	9	13.4	<10	0.9
MTH00114	100mEx100mN	763502	6444447	0.5	1.2	16	10	12.3	<10	0.9
MTH00115	100mEx100mN	763000	6444450	0.5	0.6	12	16	6.7	<10	1.2

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00116	100mEx100mN	763003	6444350	1	1.9	23	8	24.4	<10	0.6
MTH00117	100mEx100mN	763101	6444351	2	1.8	23	7	29.1	<10	0.7
MTH00118	100mEx100mN	763199	6444353	1	2.2	20	8	26.4	<10	0.7
MTH00119	100mEx100mN	763302	6444349	1	2	23	8	29.2	<10	0.7
MTH00120	100mEx100mN	763400	6444351	2	2	25	6	35.8	<10	0.6
MTH00121	100mEx100mN	763501	6444349	0.5	1.5	16	3	19.3	<10	0.4
MTH00122	100mEx100mN	763598	6444352	2	0.5	12	4	10.3	<10	0.5
MTH00123	100mEx100mN	763003	6444250	0.5	1.3	17	10	7.6	<10	0.8
MTH00124	100mEx100mN	763101	6444250	0.5	0.9	13	8	5.9	<10	0.7
MTH00125	100mEx100mN	763205	6444247	0.5	0.5	16	8	6.2	<10	0.7
MTH00126	100mEx100mN	763301	6444246	0.5	0.7	13	8	7.8	<10	0.9
MTH00127	100mEx100mN	763402	6444255	1	0.8	14	5	10.1	<10	0.6
MTH00128	100mEx100mN	763498	6444251	2	0.7	18	4	13.8	<10	0.4
MTH00129	100mEx100mN	763598	6444249	0.5	0.7	19	4	17.2	<10	0.4
MTH00130	100mEx100mN	763003	6444147	1	1.7	23	7	26.8	<10	0.6
MTH00131	100mEx100mN	763096	6444149	0.5	0.5	16	8	9.4	<10	1.1
MTH00132	100mEx100mN	763205	6444152	1	0.6	19	11	7.6	<10	1
MTH00133	100mEx100mN	763302	6444150	0.5	0.8	15	10	7.9	<10	1
MTH00134	100mEx100mN	763398	6444150	1	0.7	15	7	5.9	<10	1.1
MTH00135	100mEx100mN	763498	6444148	0.5	0.8	16	4	11.5	<10	0.4
MTH00136	100mEx100mN	763599	6444150	1	0.9	15	4	10.6	<10	0.5
MTH00137	50mEx100mN	763702	6444153	2	0.6	20	6	18.3	<10	1.3
MTH00138	50mEx100mN	763750	6444148	0.5	0.3	16	4	12.3	<10	0.5
MTH00139	50mEx100mN	763800	6444150	2	0.4	18	4	11.9	<10	0.7
MTH00140	50mEx100mN	763849	6444150	1	0.8	19	4	14.1	<10	0.7
MTH00141	50mEx100mN	763899	6444147	2	0.8	19	4	9.8	<10	0.5
MTH00142	50mEx100mN	763952	6444144	0.5	0.6	18	4	7.1	<10	0.5
MTH00143	50mEx100mN	763998	6444149	0.5	1.2	35	5	10.9	<10	1.2
MTH00144	50mEx100mN	764090	6444149	0.5	1.1	22	5	19.6	<10	0.6
MTH00145	50mEx100mN	764101	6444151	1	0.8	19	4	9.8	<10	0.6
MTH00146	50mEx100mN	764151	6444148	0.5	0.6	23	4	11.2	<10	0.5
MTH00147	100mEx100mN	763000	6444050	2	1.2	23	6	20.1	<10	0.7
MTH00148	100mEx100mN	763098	6444052	1	0.9	21	4	13.4	<10	0.4
MTH00149	100mEx100mN	763200	6444050	1	1	19	4	15	<10	0.5
MTH00150	100mEx100mN	763301	6444050	1	0.7	16	3	11.6	<10	0.5
MTH00151	100mEx100mN	763401	6444048	2	0.7	13	5	7.9	<10	0.5
MTH00152	100mEx100mN	763502	6444045	1	0.8	12	5	9.6	<10	0.6
MTH00153	100mEx100mN	763599	6444052	0.5	0.6	11	4	8.5	<10	0.5
MTH00154	50mEx100mN	763700	6444048	1	0.8	15	5	8.5	<10	0.5

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00155	50mEx100mN	763747	6444053	0.5	1	15	4	12.7	<10	0.6
MTH00156	50mEx100mN	763795	6444044	0.5	0.5	14	4	7.6	<10	0.4
MTH00157	50mEx100mN	763853	6444050	1	0.7	19	5	8.3	<10	0.5
MTH00158	50mEx100mN	763899	6444044	2	0.4	16	4	5.6	<10	0.7
MTH00159	50mEx100mN	763946	6444046	2	0.5	17	4	6.5	<10	0.9
MTH00160	50mEx100mN	764000	6444056	0.5	0.2	15	4	8.4	<10	0.8
MTH00161	50mEx100mN	764052	6444052	2	0.6	15	5	7.3	<10	0.6
MTH00162	50mEx100mN	764103	6444044	1	0.7	19	5	8.2	<10	0.5
MTH00163	50mEx100mN	764151	6444048	0.5	0.5	35	4	5.4	<10	0.5
MTH00164	100mEx100mN	763000	6443952	2	1.9	31	3	25.8	<10	0.5
MTH00165	100mEx100mN	763101	6443951	1	0.9	24	5	16	36	1
MTH00166	100mEx100mN	763201	6443951	0.5	0.3	12	7	5	<10	0.7
MTH00167	100mEx100mN	763301	6443951	0.5	0.5	15	4	6.8	<10	1
MTH00168	100mEx100mN	763400	6443952	0.5	0.5	13	4	6.6	<10	0.5
MTH00169	100mEx100mN	763500	6443952	2	1.1	21	5	10.9	<10	0.7
MTH00170	100mEx100mN	763601	6443951	2	1.1	15	4	8.9	<10	0.6
MTH00171	50mEx100mN	763692	6443948	1	0.5	13	4	6.3	<10	0.5
MTH00172	50mEx100mN	763748	6443945	0.5	0.8	17	5	13.4	<10	0.8
MTH00173	50mEx100mN	763798	6443949	1	0.4	15	4	8.7	<10	0.4
MTH00174	50mEx100mN	763851	6443940	1	0.2	11	4	5.4	<10	0.5
MTH00175	50mEx100mN	763898	6443950	0.5	0.5	12	4	5.7	<10	0.5
MTH00176	50mEx100mN	763947	6443948	0.5	0.2	12	5	4.9	<10	14.6
MTH00177	50mEx100mN	764001	6443941	1	0.4	13	3	6.3	<10	0.5
MTH00178	50mEx100mN	764052	6443947	1	0.4	14	4	3.9	<10	0.5
MTH00179	50mEx100mN	764101	6443949	1	0.5	22	4	7.6	<10	0.5
MTH00180	50mEx100mN	764150	6443950	0.5	0.8	12	5	5.7	<10	0.5
MTH00181	50mEx100mN	763702	6443850	2	0.5	12	4	7	<10	0.5
MTH00182	50mEx100mN	763750	6443856	0.5	0.8	12	4	8.4	<10	0.8
MTH00183	50mEx100mN	763800	6443848	1	0.7	11	4	5.8	<10	0.5
MTH00184	50mEx100mN	763845	6443854	0.5	0.4	13	4	6.2	<10	0.4
MTH00185	50mEx100mN	763901	6443850	0.5	0.5	11	4	5.4	<10	0.4
MTH00186	50mEx100mN	763950	6443842	2	0.2	5	<2	4.1	<10	0.3
MTH00187	50mEx100mN	764003	6443850	1	0.4	14	4	7.3	<10	0.5
MTH00188	50mEx100mN	764050	6443845	1	0.8	5	3	5.2	<10	0.4
MTH00189	50mEx100mN	764101	6443850	2	0.5	12	3	6.2	<10	0.3
MTH00190	50mEx100mN	764152	6443850	1	0.5	5	4	5.2	<10	0.4
MTH00191	50mEx100mN	763701	6443750	1	1.1	17	11	8.4	<10	0.7
MTH00192	50mEx100mN	763752	6443752	0.5	0.7	12	13	5.7	<10	1
MTH00193	50mEx100mN	763805	6443754	1	0.8	11	8	9.9	<10	0.8

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00194	50mEx100mN	763850	6443750	1	1.1	19	5	16.7	<10	0.6
MTH00195	50mEx100mN	763898	6443752	0.5	0.9	13	5	6.9	<10	0.6
MTH00196	50mEx100mN	763950	6443748	2	0.6	28	4	23.5	<10	0.6
MTH00197	50mEx100mN	764000	6443745	0.5	1.2	20	4	22.5	<10	0.6
MTH00198	50mEx100mN	764052	6443749	0.5	1	25	4	23.5	<10	0.6
MTH00199	50mEx100mN	764102	6443749	0.5	0.3	15	5	7.4	<10	0.8
MTH00200	50mEx100mN	764144	6443747	0.5	1	14	4	8.2	<10	0.6
MTH00201	50mEx100mN	763702	6443654	2	0.6	18	5	4.8	<10	0.5
MTH00202	50mEx100mN	763750	6443647	0.5	0.9	16	4	6.5	12	0.7
MTH00203	50mEx100mN	763797	6443650	1	0.6	16	4	10.5	<10	0.5
MTH00204	50mEx100mN	763850	6443649	1	1.7	22	4	24.7	<10	0.5
MTH00205	50mEx100mN	763898	6443651	1	2.5	25	5	39	<10	0.5
MTH00206	50mEx100mN	763948	6443649	1	1.4	22	3	53.3	<10	0.5
MTH00207	50mEx100mN	764000	6443652	0.5	1	17	3	16.6	<10	0.5
MTH00208	50mEx100mN	764052	6443652	1	0.7	16	4	14.7	<10	0.4
MTH00209	50mEx100mN	764101	6443653	1	2.8	34	4	42.1	<10	0.5
MTH00210	50mEx100mN	764152	6443650	1	0.8	18	4	11.5	<10	0.5
MTH00211	50mEx100mN	763702	6443549	1	1.1	18	8	8.1	<10	1.6
MTH00212	50mEx100mN	763751	6443546	0.5	0.7	21	3	11.2	<10	0.5
MTH00213	50mEx100mN	763799	6443546	2	0.8	25	3	19.6	<10	0.4
MTH00214	50mEx100mN	763850	6443550	0.5	0.8	20	2	22.8	<10	0.4
MTH00215	50mEx100mN	763899	6443551	1	2.3	27	4	39.8	<10	0.5
MTH00216	50mEx100mN	763948	6443547	2	1.2	23	4	23.8	<10	0.4
MTH00217	50mEx100mN	763999	6443549	0.5	1.5	19	3	19.6	<10	0.3
MTH00218	50mEx100mN	764048	6443552	0.5	1.8	21	4	28.4	<10	0.4
MTH00219	50mEx100mN	764094	6443550	1	1.7	30	3	25.2	<10	0.5
MTH00220	50mEx100mN	764143	6443550	1	0.7	20	4	12.1	<10	0.4
MTH00221	50mEx100mN	763702	6443446	2	0.9	14	3	10.9	<10	0.4
MTH00222	50mEx100mN	763752	6443457	1	2.1	24	3	23.8	<10	0.4
MTH00223	50mEx100mN	763799	6443449	2	1.1	17	3	15.4	<10	0.4
MTH00224	50mEx100mN	763849	6443450	0.5	1.4	20	4	16.8	<10	0.4
MTH00225	50mEx100mN	763902	6443453	0.5	3.1	27	5	42.5	<10	0.8
MTH00226	50mEx100mN	763951	6443451	2	2.5	20	3	41.9	<10	0.4
MTH00227	50mEx100mN	764000	6443449	0.5	3.2	24	3	38.8	<10	0.4
MTH00228	50mEx100mN	764050	6443450	0.5	2.2	22	3	31.4	<10	0.4
MTH00229	50mEx100mN	764099	6443451	0.5	2.5	21	3	26.9	<10	0.4
MTH00230	50mEx100mN	764155	6443447	1	3	25	5	36.9	<10	0.7
MTH00231	50mEx100mN	763699	6443351	1	1.2	29	4	11.5	<10	0.5
MTH00232	50mEx100mN	763752	6443347	0.5	0.6	12	3	5	<10	0.4

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00233	50mEx100mN	763801	6443351	1	1.1	19	3	19.2	<10	0.4
MTH00234	50mEx100mN	763852	6443349	1	1.6	30	3	39.1	<10	0.4
MTH00235	50mEx100mN	763894	6443351	1	2.1	20	3	30.9	<10	0.4
MTH00236	50mEx100mN	763950	6443350	0.5	2	18	2	19.9	<10	0.3
MTH00237	50mEx100mN	763999	6443348	0.5	1.9	18	<2	17.7	<10	0.3
MTH00238	50mEx100mN	764046	6443350	0.5	1.3	18	<2	16.1	<10	0.3
MTH00239	50mEx100mN	764102	6443351	1	1.9	18	2	22.7	<10	0.3
MTH00240	50mEx100mN	764150	6443351	1	2.6	21	3	27.8	<10	0.4
MTH00241	50mEx100mN	763703	6443246	0.5	<0.1	5	<2	3.4	<10	0.2
MTH00242	50mEx100mN	763751	6443252	0.5	0.3	5	3	8.5	<10	0.3
MTH00243	50mEx100mN	763800	6443250	0.5	0.6	14	2	6.6	<10	0.3
MTH00244	50mEx100mN	763849	6443248	0.5	0.5	17	3	14.9	<10	0.3
MTH00245	50mEx100mN	763899	6443250	1	2.5	22	3	42.4	<10	0.5
MTH00246	50mEx100mN	763948	6443250	0.5	1.8	19	4	35.9	<10	0.4
MTH00247	50mEx100mN	764000	6443250	0.5	2.9	22	4	40.1	<10	0.6
MTH00248	50mEx100mN	764052	6443249	1	2.7	19	3	33.1	<10	0.5
MTH00249	50mEx100mN	764098	6443247	0.5	1.7	19	3	30.1	<10	0.4
MTH00250	50mEx100mN	764152	6443250	1	3.3	20	3	31.4	<10	0.4
MTH00251	100mEx100mN	763700	6445050	2	1	21	5	12.7	<10	0.6
MTH00252	100mEx100mN	763800	6445050	2	0.7	17	4	15.2	<10	0.5
MTH00253	100mEx100mN	763909	6444052	2	17.6	46	6	23.9	<10	0.8
MTH00254	100mEx100mN	764003	6445051	3	2.4	36	6	34.6	<10	0.7
MTH00255	100mEx100mN	764101	6445050	2	2.5	31	8	33.1	<10	3
MTH00256	100mEx100mN	764204	6445046	2	10.5	28	4	37.3	<10	0.6
MTH00257	100mEx100mN	763701	6444948	2	0.8	16	4	11.8	<10	0.7
MTH00258	100mEx100mN	763802	6444949	1	1.9	16	4	12.9	<10	0.5
MTH00259	100mEx100mN	763898	6444951	0.5	0.4	19	6	14.4	<10	5.6
MTH00260	100mEx100mN	764000	6444950	2	1.4	21	6	19.2	<10	0.7
MTH00261	100mEx100mN	764100	6444950	2	2	30	6	27.7	<10	0.7
MTH00262	100mEx100mN	764196	6444952	2	2.3	29	9	28	<10	1
MTH00263	100mEx100mN	763701	6444849	1	0.8	14	6	10.9	<10	0.6
MTH00264	100mEx100mN	763798	6444851	2	0.8	14	5	10.1	<10	0.6
MTH00265	100mEx100mN	763898	6444851	1	1.7	25	5	14.7	<10	0.7
MTH00266	100mEx100mN	763998	6444854	1	1	19	5	16.8	<10	0.5
MTH00267	100mEx100mN	764097	6444850	1	1	19	5	18.8	<10	0.7
MTH00268	100mEx100mN	764200	6444849	1	1.8	29	5	31.1	<10	2.2
MTH00269	100mEx100mN	763701	6444748	1	0.9	12	6	6.6	<10	0.6
MTH00270	100mEx100mN	763799	6444749	0.5	0.6	14	5	9.8	<10	0.5
MTH00271	100mEx100mN	763896	6444752	0.5	0.5	16	6	12.5	<10	0.6

Sample ID	Grid spacing	East	North	Be_ppm	Cs_ppm	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MTH00272	100mEx100mN	764000	6444750	0.5	1	19	6	10	<10	0.7
MTH00273	100mEx100mN	764101	6444749	1	0.8	17	5	13.2	<10	0.6
MTH00274	100mEx100mN	764202	6444751	1	1.5	20	6	21.3	<10	0.6
MTH00275	100mEx100mN	763700	6444650	1	0.9	56	5	7.6	<10	0.6
MTH00276	100mEx100mN	763799	6444650	1	0.7	20	5	8.4	<10	0.6
MTH00277	100mEx100mN	763902	6444657	2	0.6	21	6	5.2	<10	0.7
MTH00278	100mEx100mN	763999	6444651	0.5	1.7	12	15	12.5	<10	1.2
MTH00279	100mEx100mN	764102	6444652	2	2.9	19	10	25.5	<10	0.8
MTH00280	100mEx100mN	764200	6444649	0.5	2.9	19	10	27.9	<10	1
MTH00281	100mEx100mN	763698	6444550	3	0.9	14	8	7.7	<10	0.7
MTH00282	100mEx100mN	763800	6444550	2	0.5	14	7	4.9	<10	0.6
MTH00283	100mEx100mN	763900	6444552	2	0.4	15	5	6.7	<10	0.6
MTH00284	100mEx100mN	764000	6444550	2	0.5	21	5	4.8	<10	0.5
MTH00285	100mEx100mN	764098	6444553	1	1.5	24	3	16.8	<10	0.4
MTH00286	100mEx100mN	764199	6444552	2	2	27	6	32.1	<10	0.6
MTH00287	100mEx100mN	763701	6444450	0.5	1	14	5	7.4	<10	0.6
MTH00288	100mEx100mN	763796	6444447	1	0.7	12	4	8.1	<10	0.4
MTH00289	100mEx100mN	763901	6444451	1	0.7	15	4	6.4	<10	0.5
MTH00290	100mEx100mN	764003	6444446	0.5	0.9	23	4	7	<10	0.4
MTH00291	100mEx100mN	764106	6444449	1	0.5	21	3	9.9	<10	0.4
MTH00292	100mEx100mN	764201	6444447	0.5	1	27	4	23.8	<10	0.5
MTH00293	100mEx100mN	763697	6444347	1	0.6	15	4	8.2	<10	0.6
MTH00294	100mEx100mN	763798	6444347	1	0.7	17	5	19	<10	0.5
MTH00295	100mEx100mN	763901	6444343	1	0.4	15	5	7.9	<10	0.4
MTH00296	100mEx100mN	763998	6444350	1	1.1	16	4	7.3	<10	0.4
MTH00297	100mEx100mN	764102	6444348	1	0.4	15	3	7	<10	0.4
MTH00298	100mEx100mN	764204	6444352	1	1	16	2	17.3	<10	0.5
MTH00299	100mEx100mN	763698	6444250	1	1.6	18	4	27.7	<10	0.5
MTH00300	100mEx100mN	763799	6444251	0.5	1.8	22	4	34.5	<10	0.4
MTH00301	100mEx100mN	763898	6444248	0.5	0.8	17	4	14.2	<10	0.5
MTH00302	100mEx100mN	763999	6444258	0.5	0.6	14	5	6.1	<10	0.6
MTH00303	100mEx100mN	764101	6444250	1	0.7	13	3	5	<10	0.5
MTH00304	100mEx100mN	764200	6444252	2	0.6	16	3	9.1	<10	0.4

E:info@riversgold.com.au

APPENDIX 2:

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at the Mt Holland Project.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	A total of 223 soil samples were collected from the southern portion of E77/2784.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Reconnaissance soil sampling.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisationtypes (eg submarine nodules) may warrant disclosure of detailed information.	Soils sieved -2mm, nominal weight 300gm from 15-20cm depths.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is orientated and if so, by what method, etc).	No drilling is being reported.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling is being reported.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No drilling is being reported.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling is being reported.
Logging	Whethercore and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Sample type and landform/regolith settings were recorded. No drilling reported.
	The total length and percentage of the relevant intersections logged.	Geochemical sample from regolith.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No sub-sampling has been undertaken.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	No sub-sampling has been undertaken.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling.	No sub-sampling has been undertaken.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size of 0.3 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Soil samples were submitted to Jinning Laboratory Services.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	ICP-OES & ICP-MS LITHIUM EXPLORERS PACKAGE Samples are fused in a furnace (~ 650 C ⁰) with Sodium Peroxide in a Ni crucible. The melt is dissolved in dilute Hydrochloric acid and the solution analysed. This process provides complete dissolution of most minerals including silicates. Volatile elements are lost at the high fusion temperatures.
		This package combines a Na2O2 fusion with:- ICP-OES finish including majors in addition to Lithium. ICP_MS finish from same digest solution for key trace elements FUSZLi - Lithium and major elements (includes fusion)
		Element Range Element Range Element Range Cs 0.1ppm - 1% Ga 1ppm - 5% Mo 1ppm - 10% Nb 2ppm - 20% Sn 10ppm - 30% Rb 0.5ppm - 10% Ta 0.1ppm - 1% Be 1ppm - 5% FUSZSM - Trace elements
		Element Rance Element Rance Al 0.01 - 50% Li 10ppm -10% S 0.02-60% Ca 0.1 - 70% Mg 0.01 - 60% Si 0.1 - 50% Fe 0.01 - 75% Mn 0.02 - 75% Ti 50ppm - 60% K 0.05 - 20% P 0.02 - 75% V 20ppm - 20%
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	CRM & field duplicated samples were inserted every 25 samples for QA/QC control.
Verification of sampling and assaving	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are reviewed by 2 or more company geologists.
	The use of twinned holes.	No drilling being reported
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field data were collected manually and transferred to spreadsheets. Sample location coordinates were determined and recorded using a handheld GPS.
	Discuss any adjustment to assay data.	No adjustments to data made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All locations determined by handheld GPS using GDA94 datum in UTM Zone 50.
	Specification of the grid system used.	
	Quality and adequacy of topographic control.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Sample spacing was 100m fro most of the soils program with sampling down to 50m in some areas, and is recorded in Table 1 Geochemical Data and Sample Location.

Criteria	JORC Code explanation	Commentary
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sampling type and spacing not designed to be used in an MRE.
	Whether sample compositing has been applied.	No compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased samplingofpossiblestructures and the extent to which this is known, considering the deposit type.	Sampling was of a reconnaissance nature only and was not designed to achieve unbiased sampling. No drilling reported.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No drilling has been undertaken within the greater area and orientation of structures is unknown.
Sample security	The measures taken to ensure sample security.	All samples were placed in plastic or calico bags, and delivered to Jinning laboratory by RGL consultants.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	RGL have an Option Agreement to acquire 80% of the Lithium Rights over Exploration License E77/2784. overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. The tenement holders of E77/2784 have entered into a heritage agreement with the Native Title Holders for the Area
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in thearea.	E77/2784 is in good standing and there are no know impediments to obtaining a licence to operate in the area
		Mineral exploration is possible in nature reserves in WA following appropriate preservation measures.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration was completed by multiple companies including Normandy in Joint Venture with Aztec resources, Kidman resources, and multiple other parties over the years.
		Most of the exploration conducted prior to Kidman Resources' activities in 2014-2016 was focussing on the gold mineralisation potential of the area and mostly disregarded any information pertaining to pegmatites.
Geology	Deposit type, geological setting and style of mineralisation.	Potential Lithium Pegmatites within Archean terrane.

Criteria	JORC Code explanation	Commentary		
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	No drilling being reported.		
	easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	No drilling being reported.		
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	No aggregation methods have been used.		
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No aggregation methods have been used.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No aggregation methods have been used.		
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No mineralisation widths have been reported.		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Location maps of projects within the release with relevant exploration information contained.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration to report.		

E:info@riversgold.com.au

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions orlarge-scale step-out drilling).	Full technical review, with ground penetrating radar results due in the next few weeks, to assist with drill hole design.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	A PoW for drilling is to be applied for, with heritage clearance to also be gained.