

Maiden Drilling Results Confirm Multiple Spodumene-Rich Widths at Tambourah

HIGHLIGHTS:

- Tambourah Lithium Project has confirmed multiple and wide, spodumene-rich mineralisation in pegmatites:
 - 14m pegmatite width in TMBRC003
 - Two intercepts assayed ~ 1% Li₂O
 - 0.9% Li₂O over 4m from 17m downhole (0.5% Li₂O cut-off)
- Exploration tools and methods have proven highly successful:
 - Mineralised pegmatite at depth intersected in all 16 drill holes that were targeted using geological mapping and observation of the occurrence of lepidolite mineralisation at surface
 - Spodumene, lepidolite, microcline, albite and quartz identified
 - Four of the five holes targeted using Deep Ground Penetrating Radar (DGPR) to locate pegmatites where no surface expression is evident were successful in intercepting pegmatite with drilling down to 80m

• Exploration field programs to fast-track target identification for 2023 drill program:

- As a result of the encouraging preliminary drill results in Q4, 2022, the Company extended the DGPR coverage area to the east at Bengal
- An 1,800-sample geochemical program has been completed which has extended to the east into ultramafic greenstones
- Results from these field programs are expected in the next few weeks and will form the basis for the 2023 drilling and exploration program which is scheduled to commence in late March 2023

Riversgold Chief Executive Officer, Julian Ford, said: "These drill results are the culmination of our 2022 exploration program at Tambourah and represent a significant step forward to unlocking the lithium potential of our Pilbara tenement package, located close to the globally significant Pilgangoora and Wodgina deposits.

"We have only really started our exploration efforts at Tambourah, and receiving the confirmation that we have pegmatites up to 14 metres in width with spodumene lithium mineralisation is critical to us now being able to move the Project forward. We believe that our 2022 drilling was potentially too close to the granitic source and drilling slightly further to the east, targeting major dilation zones, will provide the consistent widths of mineralisation we are after. We expect to publish the results of our extensive geochemical and geophysical results in coming weeks, which we will use to develop our drill targets for 2023."

Riversgold Limited (ASX: RGL) ("Riversgold", "the Company") is pleased to announce the assay results from the drilling conducted during the last quarter of 2022 at the Company's 100% owned Tambourah Lithium Project within the Pilbara region of Western Australia.

A total of 21 reverse circulation (**RC**) drill holes for 2,661m were completed at the Bengal prospect as part of Riversgold's maiden drilling program at Tambourah.

Twenty of the 21 drill holes intersected a cumulative total of 143m of interpreted lithium-caesiumtantalum (**LCT**) pegmatite. Lithium mineralisation intersected is composed of a mix of spodumene and lepidolite, although a more detailed quantitative mineralisation identification program is yet to be completed.

Sixteen of the drill holes were targeted to intersect mapped pegmatites with lepidolite outcropping at surface. The maximum width of the mapped pegmatites at surface was approximately 1m, with only lepidolite mineralisation observed. Lepidolite is a lithium bearing, phyllosilicate mineral which is resistant to weathering. Based on rock chip mineral ratios, Riversgold postulated that the pegmatites were likely to be spodumene-rich, even though no spodumene had been identified in surface rock chips. Spodumene, as a pyroxene mineral, is far less resistant to weathering. The hypothesis was that it was likely that wider pegmatites with potential to be spodumene-rich could be present at depth. Riversgold considers that the exploration drill program was highly successful in proving the hypothesis, with the widest pegmatite width intersected 17m downhole in hole TMBRC011. The best lithium mineraisation intersection was TMBRC003, being a **14m down hole intersection, within a pegmatite unit displaying a high grade spodumene core and lepidolite at its base**.

TMBRC003 (see Figure 2) intersected:

- 14m @ 0.50% Li₂O from 15m to 29m downhole including 1m @ 1% Li₂O from 18m down hole
- Applying a 0.5% Li₂O assay threshold cut-off within the 14m downhole intersection, two smaller intersections of 4m @ 0.9% Li₂O from 17m to 21m and 3m @ 0.6% Li₂O from 25m to 28m downhole were identified reflecting zonation of Li₂O grade within the pegmatite unit.

The Company is pleased to note that the maiden Tambourah lithium exploration drill program successfully validated that the Bengal pegmatite system is a **spodumene-rich LCT system** where fresh subsurface pegmatite is significantly broader than the narrow, weathered surface outcrop. More importantly, the Company has confirmed that the dominant mineralisation species is spodumene.

The five remaining drillholes were designed to test the validity of the previously completed DGPR survey where no surface outcrop is visible, but subsurface similarly orientated anomalies were postulated to be buried pegmatites. Results for those five test drillholes are encouraging with four out of the five holes confirming the DGPR interpretation by intercepting pegmatite, with the fifth hole intersecting a fault zone rather than a pegmatite.

The successful use of DGPR in identifying buried pegmatite is a material breakthrough given that as Riversgold's exploration activities at Tambourah move eastward, the expectation is that more spodumene and less lepidolite mineralisation will be encountered, meaning there will likely be no surface expression of these pegmatites.

Importantly, it was noted that in the majority of the pegmatite intercepts, visible microcline feldspar was seen. The occurrence of microcline is generally considered to be characteristic of being within the proximal zone of the mineralisation system and that the optimal mineralisation zone is likely to be further away from the source granite in a more distal zone. In the case of the Bengal prospect, this suggests that the optimal zone of lithium mineralisation lies to the east of the 2022 drilling.

Figure 1: Bengal Lithium Prospect drilling result map

Figure 2: Bengal drilling section

Ongoing multi-element analysis of previously collected soil samples over the Tambourah tenement will be further analysed in order to generate vectors to better determine the optimal exploration zone for the next phase of drilling. Combined with the recently completed geochemical program which extended east into the ultramafic greenstones, results from 4,000 geochemical samples are expected in the next couple of weeks.

About the Tambourah Lithium Project

The main Tambourah tenement, E45/5721, is ~25km from north to south and 6km east to west. Based on the LCT exploration model, the source of the lithium is thought to be the Split Rock Supergroup Granite, shown to the left of the tenement in Figure 1. Based on the generally applied LCT model, the lithium-rich portion of the pegmatite is believed to occur within 6km - 10km of the granite intrusion, indicating the entire greenstone portion of this tenement is prospective for LCTrich pegmatites.

Tenement wide stream sediment sampling and assaying results are expected to add additional prospects to the 2023 exploration program, not only on the left side of the tenement adjacent to the Tambourah granite intrusion, but also on the eastern flank, where the greenstones border the Shaw Granite Intrusion.

Figure 3: Location of Pilbara Projects

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact Julian Ford

Chief Executive Officer

- P: (08) 6143 6747
- E: <u>iford@riversgold.com.au</u>

Ed Mead

Director

- P: 0407 445 351
- E: <u>ed@meadcorporate.com</u>

David Lenigas Executive Chairman

- P: +44 (0) 7881825378
- E: <u>dlenigas@riversgold.com.au</u>

About Riversgold

Riversgold Ltd is an ASX-listed exploration company with a lithium-focused strategy in the worldrenowned Pilbara and Yilgarn cratons in Western Australia. In 2022, the Company acquired a suite of four lithium-prospective exploration tenement applications covering 164km² in the Pilbara region. The key Tambourah Project is underexplored and has the potential to host a major lithiumcaesium-tantalum system much like the nearby Pilgangoora and Wodgina deposits. Further, the Company has acquired a tenement package of 301.2km² prospective for lithium in the Southern Cross-Marvel Loch region of Western Australia including a tenement immediately bordering the Mt Holland Lithium Project (189Mt at 1.5% Li₂O).

Competent Person's Statement

The information in this document that relates to exploration is based on information compiled or reviewed by Edward Mead, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Mead is a Director of Riversgold Ltd. Mr Mead has sufficient experience that is relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mead consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1: Drilling and Assay Details

Table 1: Drillholes collar

Hole_ID	GDA94 Easting	GDA94 Northing	RL	Max Depth	Azi	Dip
TMBRC001	726073	7598713	393.85	150	320	-60
TMBRC002	726072	7598661	364	100	320	-60
TMBRC003	726038	7598635	405.88	136	320	-50
TMBRC004	726204	7598533	398.06	95	315	-60
TMBRC005	726219	7598517	373	106	315	-60
TMBRC006	726165	7598487	375	40	310	-60
TMBRC007	726273	7598645	392	100	325	-60
TMBRC008	726079	7598755	391.8	100	290	-60
TMBRC009	726135	7598712	395.5	148	310	-55
TMBRC010	726088	7598645	404.8	148	310	-60
TMBRC011	726049	7598625	406.7	148	315	-60
TMBRC012	725997	7598594	399.9	148	290	-55
TMBRC013	725910	7598556	388.4	178	310	-55
TMBRC014	726352	7598405	419.8	100	315	-55
TMBRC015	726401	7598497	410.4	97	335	-60
TMBRC016	726446	7598499	403	151	335	-60
TMBRC017	726436	7598529	405.3	85	330	-60
TMBRC018	726321	7598579	413.4	151	290	60
TMBRC019	726242	7598720	402.6	163	270	-60
TMBRC020	726039	7598565	402	150	315	-60
TMBRC021	726072	7598610	417	158	315	-60

Table 2: Significant intersections (0.5% Li₂O cut-off)

Hole_ID	From	То	Interval	% Li2O
TMBRC002	32	33	1	0.8
TMBRC003	17	21	4	0.9
inc.	18	19	1	1.0
TMBRC003	26	29	3	0.6
TMBRC010	43	44	1	0.6
TMBRC011	31	36	5	0.7
inc.	34	35	1	1.0

Table 3: Significant Drill Intersection Details including Logging and Assays

Hole ID & Target	Max depth (m)	From (m)	То (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li2O (%)	Comments
Notes				1	2	3	4	5	6
		35	36		Y		Y	0.03	
		36	37					0.21	
		37	38					0.27	
	150	38	39	•				0.29	6m @ 0.2% Li ₂ O from 36m
TIVIBRCOUT	150	39	40	0				0.29	using 0.1 % Li ₂ O Cut-off
		40	41					0.32	
		41	42					0.25	
		42	43					0.05	
		23	29					0.05	
		24	25					0.05	7m @0 3% Li20 from 27m
		25	26					0.05	inc. 1m @0.8% Li ₂ O from 32m
		26	27					0.05	using 0.1 % Li ₂ O Cut-off
		27	28					0.10	
		28	29	11				0.08	using 0.2 % Li2O From Som
TMBRC002	100	29	30			Y		0.08	
		30	31		Y	Y	Y	0.39	1m @0.8% Li ₂ O from 32m
		31	32					0.39	using 0.5 % Li ₂ O Cut-off
		32	33					0.81	
		33	34					0.13	
		88	89	2				0.08	
		89	90	3				0.04	

Hole ID & Target	Max depth (m)	From (m)	To (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li2O (%)	Comments
		90	91					0.15	
		15	16		Y		Y	0.17	
		16	17		Y	Y	Y	0.45	
		17	18			Y	Y	1.04	15m @0.5% Li ₂ O from 15m
		18	19					0.85	using 0.1 % Li ₂ O Cut-off
		19	20					0.84	12m @0.6% Li20 from 16m &
		20	21		Y		Y	0.33	2m @0.7% Li ₂ O from 26m
		20	22	13		Y		0.17	using 0.2 % Li ₂ O Cut-off
		22	22					0.07	
	136	23	23		Y			0.43	4m @0.9% Ll ₂ O from 17m & 3m @0.6% Ll ₂ O from 26m
		24	25					0.68	using 0.5 % Li ₂ O Cut-off
		25	26		Y		Y	0.70	
TIVIDRCUUS		26	27					0.52	
		27	28					0.12	
		82	83			Y		0.06	
		83	84					0.09	
		84	85					0.09	
		85	86					0.05	
		86	87	10				0.11	
		87	88					0.13	
		88	89					0.19	
		90	91		Y			0.16	
		91	92		Y			0.16	
	136	130	131	2				0.06	
TMBRC003	136	131	132	2		Y		0.08	

Hole ID & Target	Max depth (m)	From (m)	To (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li2O (%)	Comments
		17	18			Y	Y	0.04	
TMBRC004	97	18	19	3				0.06	
		19	20					0.25	
TMBRC005	106	43	44	1				0.12	
		27	28			Y		0.04	
TMBRC006	40	28	29	3				0.06	
		29	30					0.25	
TMBRC007	100					No Pegm	natites Intersec	ted	
		4	5		Y		Y	0.09	
		5	6					0.18	
		6	7	6				0.21	
	100	7	8	0				0.18	5m @0.2% Li2O from 4m
TIVIDACUUO	100	8	9					0.18	using 0.1 % Li ₂ O Cut-off
		9	10					0.04	
		33	34	1		Y		0.05	
		73	74	1		Y		0.03	
		75	76					0.10	
TMBRC009	148	76	77	3				0.10	
		77	78					0.10	
		41	42			Y		0.04	
		42	44					0.32	
TMBRC010	148	44	45	6	Y	Y	Y	0.86	9m @U.2% Li2O from 42m
		45	46			Y	Y	0.18	
		46	47			Y		0.27	

Hole ID & Target	Max depth (m)	From (m)	To (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li2O (%)	Comments
	94 95 95 96					0.05			
		95	96		Y			0.18	
		96	99		Y	Y		0.09	
		99	100	9	Y			0.23	12m @0.2% Li2O from 93m
		100	101					0.24	
		101	102		Y	Y	Y	0.39	
		102	103	F		Y		0.28	
		31	32		Y		Y	0.85	
		32	33					0.52	
		33	34					0.69	
		34	35			Y	Y	0.96	
		35	36		Y	Y	Y	0.56	24m @0.3% Li2O from 29m
		36	37	-				0.06	using 0.1 % Li ₂ O Cut-off
		37	38		Y			0.14	
		38	39		Y	Y	Y	0.24	
	140	39	40	17	Y		Y	0.19	
INBRCOTT	140	40	41	17				0.18	
		41	42		Y	Y	Y	0.28	
		42	43		Y		Y	0.24	
		43	44			Y	Y	0.44	
		44	45					0.39	
		45	46					0.19	
		46	47					0.11	
		47	48					0.08	
		48	49					0.13	

Hole ID & Target	Max depth (m)	From (m)	To (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li₂O (%)	Comments
		49	50					0.12	
		50	51		Y			0.28	
		81	82			Y		0.02	
		82	83	3				0.04	
		83	84			Y	Y	0.03	
		97	98	2				0.10	
		98	99	Z				0.20	
		107	111					0.11	
		108	109					0.05	
		109	110	C C				0.14	
		110	111	0				0.08	
		111	112					0.05	
		112	113					0.04	
		6	7	2				0.03	
		7	8					0.02	
	140	49	50	1			Y	0.07	
TIVIBRCUTZ	148	57	58	1				0.02	
		67	68	1				0.09	
		82	83	1				0.06	
		50	51			Y		0.04	
		51	52					0.04	
	170	52	53	7	Y			0.05	
TIVIDRC013	1/0	53	54	7	Y	Y		0.04	
		54	55					0.03	
		55	56					0.06	

Hole ID & Target	Max depth (m)	From (m)	To (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li₂O (%)	Comments
		56	57					0.04	
		57	58					0.03	
TMBRC014	100	47	48	1	Y	Y	Y	0.10	
TMBRC015	97	17	18	1	Y		Y	0.10	
	151	31	32	1			Y	0.06	
TIVIBRCUID	151	35	36	1		Y	Y	0.02	
TMBRC017	85	4	5	1			Y	0.14	
TMBRC018	151	70	71	1				0.04	
		136	137		Y			0.10	
		137	138					0.09	
		138	139					0.09	
TMBRC019	160	139	140	7	Y		Y	0.04	
		140	141					0.09	
		141	142		Y			0.03	
		142	144		Y	Y		0.06	
		31	32	1			Y	0.05	
		122	123	2				0.08	
		123	124	2				0.04	
	150	135	136	2				0.05	
TIVIBRCUZU	150	136	137	Z				0.04	
		141	142					0.03	
		142	143	3			Y	0.04	
		143	144					0.05	
TMBRC021	168	132	133	4	Y			0.09	

Hole ID & Target	Max depth (m)	From (m)	То (m)	Int. Thck. (m)	Spod.	Lep.	MicYro.	Li₂O (%)	Comments
		133	134					0.15	
		134	135					0.26	
		135	136					0.21	

Appendix 2: JORC Tables Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Every metre drilled was sampled at the drill rig using a rig mounted static cone splitter to collect 2 – 3kg sub samples.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Four standards, two duplicate samples and two blank samples were inserted within every 100 samples by Riversgold field personnel. A total of 1070 samples were submitted to Jinning laboratory. Gold assay was undertaken by fire assay (50g) and the Lithium suite using ICP with Sodium Peroxide fusion in a Nickel crucible.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	1m samples were taken for each metre drilled.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc).	The drilling was undertaken by Strike Drilling with their T 450 Reverse Circulation rig with 3.5inch RC capability.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drill recovery was routinely recorded via estimation of the comparative percentage of the volume of the sample bag by the company geologist. The sample recovery was deemed adequate for representative assays.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	A qualitative estimate of sample weight was undertaken to ensure consistency of sample size and to monitor sample recoveries at the time of drilling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drill sample recovery and quality is considered to be adequate for the drilling technique employed.
Logging	Whathereen and a big complete basis basis	
Logging	vvnetnercore and chipsamples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All holes have been geologically logged for lithology, mineralisation and weathering. A brief description of each drilling sample was recorded and a permanent record has been collected and stored in chip trays for reference.
	The total length and percentage of the relevant intersections logged.	All intersections logged 100% as all lengths are relevant at the current stage of exploration.
Sub- sampling	lf core, whether cut or sawn and whether quarter, half or all core taken.	A sub sample from the RC drill rig of approximately 2-4kg was taken from the sample splitter off the cyclone.

techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.			
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.			
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	No sub-sampling has been undertaken.		
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling.	No sub-sampling has been undertaken.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size of 2-4 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.		
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were submitted to Jinning Laboratories for analysis ICPOES/ICPMS and Fire Assay following a standard crush grind pulverize dissolve preparation		
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations	Gold content was analysed using 50g Fire Assay. Other elements were analysed using ICPOES/ICPMS: Al, Be, Ca, Cs, Fe, Ga, K, Li, Mg, Mn, Mo, Nb, P, Rb, S, Si,		
	factors applied and their derivation, etc.	Sn, Ta, Ti, V		
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Jinning inserted three standards, three repeat and two blank samples in every 100 samples for QA/QC control		
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are reviewed by 2 or more company geologists.		
assaying	The use of twinned holes.	No twinned drill holes.		
	Documentation of primary data, data entry procedures, data verification, data storage (physical andelectronic) protocols.	All field data were collected manually and transferred to spreadsheets. Sample location coordinates were determined and recorded using a handheld GPS.		
	Discuss any adjustment to assay data.	No adjustments to data.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All locations determined by handheld GPS using GDA94 datum in UTM Zone 50.		
	Specification of the grid system used.			
	Quality and adequacy of topographic control.			
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Sample spacing was variable and not on a regular grid as was first pass reconnaissance drilling.		
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Maiden first pass drilling is not designed for an MRE and is too coarse. The drill spacing is intended to identify lithium mineralisation, and will have reduced spacing in future programs.		
	Whether sample compositing has been applied.	No sample compositing.		
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling Azimuth was oriented perpendicular to the main strike of the potential mineralisation.		

geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No bias is seen in the orientation of drilling
Sample security	The measures taken to ensure sample security.	All samples were placed in plastic or calico bags, taken to Perth and delivered to Jinning laboratory by RGL staff.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Tenement E45/5721 is located 160km Southeast of Port Hedland. Riversgold has acquired a 100% interest in the tenement following completion of its acquisition of EV Minerals Pty Ltd. There is a 1% net smelter royalty in favour of Mining Equities Pty Ltd. A heritage agreement pertaining to the application with Palyku-Jartayi Aboriginal Corporation has been executed.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in thearea.	A land access agreement has been signed with the landowners.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous Lithium exploration was completed by Altura mining and FMG consist of rock chips and stream sediment sampling
Geology	Deposit type, geological setting and style of mineralisation.	Pegmatite hosted Lithium within the contact margin between granitic intrusion and Archean greenstone belt.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	A summary of all exploration drilling information and sampling is contained in tabulated data within this announcement.
	easting and northing of the drill hole collar elevation or RL (Reduced Level– elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Intersections have been calculated using a 0.5% Li2O cut off. No upper cut off has been applied to intersections or samples.

	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Only relevant elements are reported here. However, the samples underwent multi element assay as industry standard.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are being used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Drill holes have been drilled at -60 degrees and perpendicular to the strike of the vertical pegmatites. Reported widths of mineralisation will be close to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Location maps and appropriate diagrams and tables are contained within the release with relevant exploration information contained.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration to report.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Work to be undertaken in the near future includes a full technical review by mapping geologist Allan Ronk, currently underway. Two geophysical studies are planned to compare the relative cost/benefit of Deep Ground Penetrating Radar v's Passive Seismic techniques in the identification of further pegmatites undercover within the tenement. Further mapping and geochemical sampling of the tenement designed to follow up on the results of the geophysical studies is planned once the results of the geophysics are returned. Further drilling based on the results of the planned
		upcoming work anticipated.