

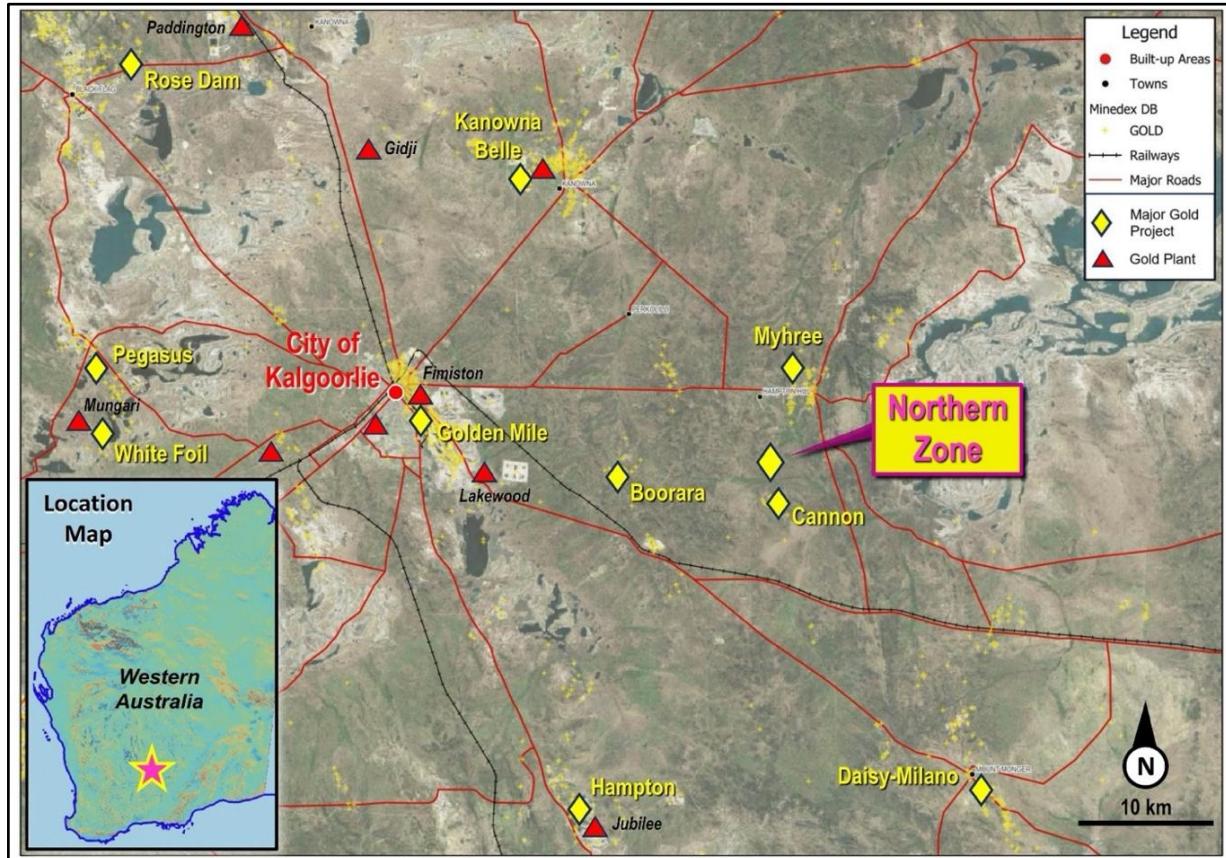
Kalgoorlie Gold Project - Drilling Results Continue to Deliver 25km from Kalgoorlie

Highlights

- Riversgold continues intersecting shallow gold mineralisation as it expands its gold footprint at its Northern Zone Gold Project near Kalgoorlie in Western Australia.
- The balance of the 2025 drilling campaign has now been received, with the final 16 drillholes reported.
- Gold mineralisation continues to expand the northeastern zone and infill the central saddle area.
- Significant results following on from previously announced selection intercepts, include:
 - 4m at 4.09 g/t Au from 54m(NZAC174)
 - 1m at 4.15 g/t Au from 46m(NZAC174)
 - 1m at 4.82 g/t Au from 43m(NZAC178)
 - 8m at 1.23 g/t Au from 44m(NZAC188)
 - 8m at 5.81 g/t Au from 46m (NZAC179)
 - 7m at 3.48 g/t Au from 48m (NZAC181)
 - 5m at 3.13 g/t Au from 41m (NZAC170)
 - 4m at 2.28 g/t Au from 43m (NZAC182)
- Conversion of the tenement to a Mining Lease continues on course with the Heritage Agreement signing being a major step forward¹
- The Mine Development and Closure Plan (MDCP) and the associated environmental assessments are progressing with Resource WA.
- Rig booked for next Monday, 10 February to begin the 2026 drilling campaign to continue expanding the shallow gold footprint.

Ed Mead, Exploration Director of Riversgold, said:

"These latest results, the last of our 2025 drilling campaign, are excellent and continue to excite us as we continue to enlarge the north-eastern gold mineralised zone, and more importantly, have confirmed the continuity of the previously undrilled central saddle zone between the eastern and western mineralised zones. Our modelling suggests that this could constitute part of a ~600m wide zone of shallow oxide mineralisation overlying the Northern Zone porphyry system. I would also like to remind shareholders that we have drilled this porphyry to a depth of around 500m² and we anticipate deeper drilling after we start the mining process with MEGA."


"Overall, the outcomes from the 2025 drilling have been very effective in enlarging the shallow, oxide gold footprint at our Kalgoorlie Gold Project, and strengthening the MEGA Resources mining scenario for 2026³. We are consistently achieving the goal of making the Project bigger in the oxide zone and we will continue to make this shallow gold project significantly larger in Q1 and Q2. I look forward to updating shareholders as we progress the Project."

¹ RGL ASX announcement dated 23 December 2025 - "Kalgoorlie Gold Project Native Title Agreements Signed"

² RGL ASX announcement dated 12 December 2023 "+100metre Wide Gold Intercepts at Northern Zone Project"

³ RGL ASX announcement dated 30 September 2025 - "Riversgold Signs Mining and Co-Operation Agreement for Northern Zone Gold Project Near Kalgoorlie"

Riversgold Limited (ASX: RGL, Riversgold or the Company) is pleased to announce the results for the final 16 drillholes of the 2025 drill program at the Northern Zone Intrusive Hosted Gold Project, located within the Company's Kalgoorlie Gold Project just 25 km east of Kalgoorlie in Western Australia (refer to **Figure 1** for location). Our 2026 drilling program is due to commence on 10 February and we look forward to a steady flow of results as the quarter progresses.

Figure 1: Northern Zone Project Map showing proximity to the Kalgoorlie "Super Pit", Golden Mile/Fimiston.

The latest drill program results (**Tables 1-3**) continue to successfully intersect the mineralised host porphyry over an increasing footprint and consistently validate the broader gold mineralisation model. Gold mineralisation continues to be intersected in the northeastern area, which remains open literally and at depth (see **Figure 2**). The recent results have also successfully infilled the central Saddle area, in a previous undrilled area. A key SW-NE cross-section derived from 3D Leapfrog software is illustrated in **Figure 3**. The interpretation illustrates gold grade shells derived from all the significant intercepts reported to the ASX to April 2025. The Leapfrog model will be updated in the next few weeks.

Northern Zone is hosted within a porphyry unit (Tonalite- Trondhjemite Intrusion, TTI), with high background gold and horizontal gold mineralised units within the TTI unit. The Northern Zone Project sits within the Canon Shear or fault zone, with further drilling required to define the limits of mineralisation identified to date. The horizontal mineralisation makes drilling to date perpendicular to the gold mineralisation, and no water in drilling to a depth of 60 metres makes the TTI also suitable for drilling with the techniques the Company has utilised to date.

Riversgold will continue advancing its understanding of the Kalgoorlie Project before proceeding with a maiden Mineral Resource Estimate (**MRE**), but this drilling will be used by Mega Resources in their mine planning for our joint plans to start mining in the first half of 2026.

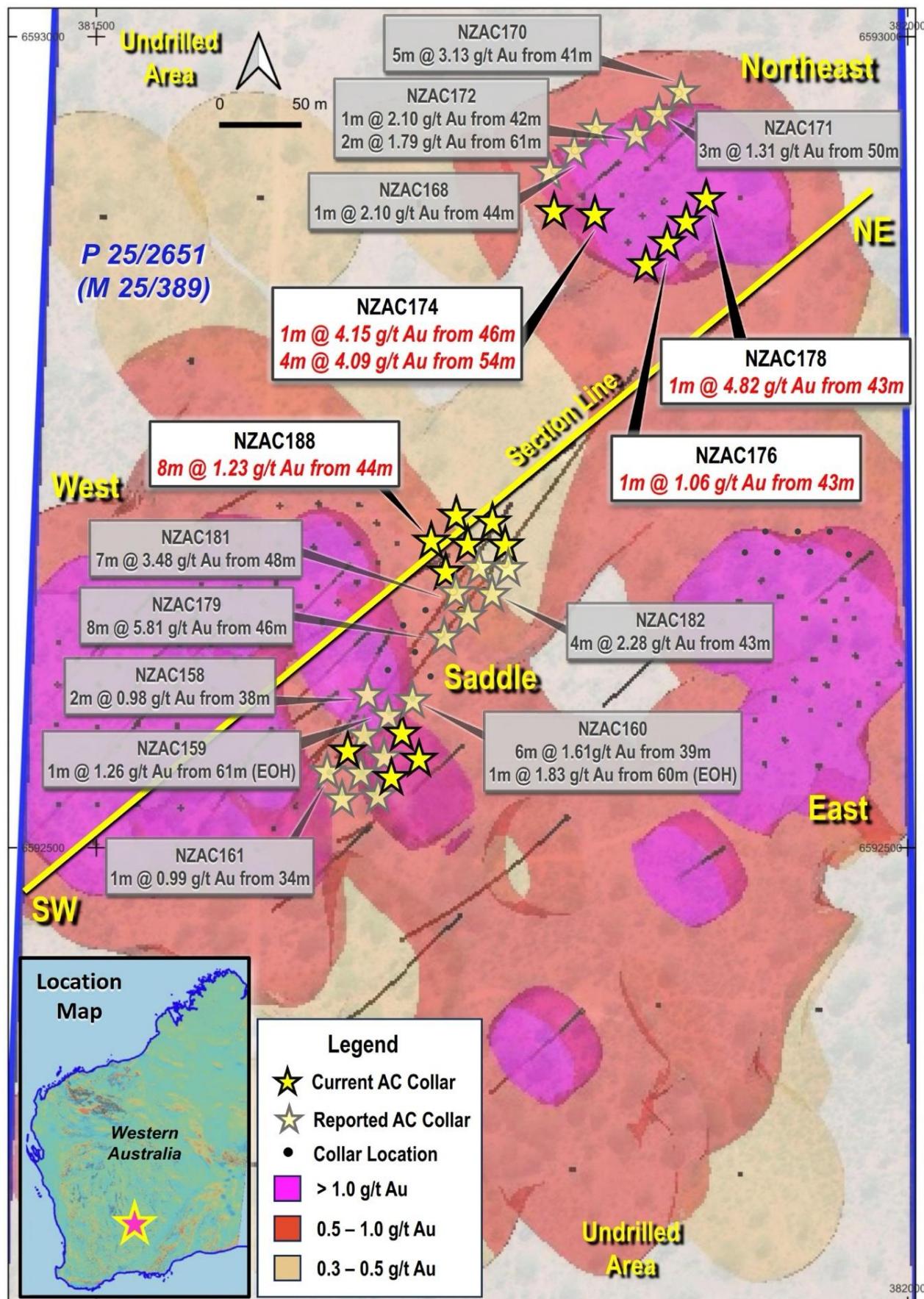


Figure 2: Drill collar plan and reported significant drill intercepts. Gold grade contours from all drilling results up to April 2025. Contours will be updated in the next few weeks.

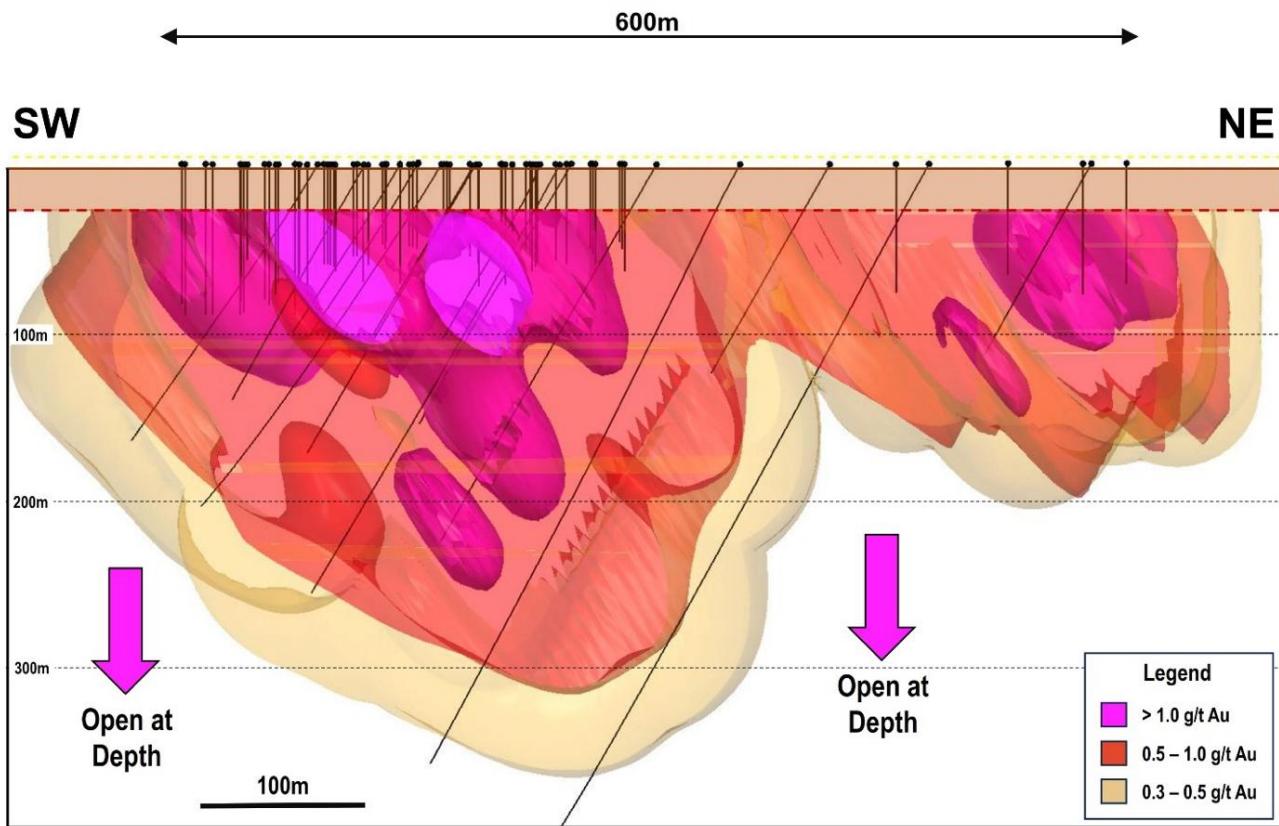


Figure 3: Cross-section of 3D Leapfrog software model. The interpretation illustrates gold grade shells, derived from all the significant intercepts reported to the ASX to April 2025. The Leapfrog model will be updated in the next few weeks. The model is constrained via a 25m buffer to all the RGL/Oracle drill hole traces that have been drilled at Northern Zone since 2021. Refer to Figure 2 Drill collar plan for the location of the section line.

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

David Lenigas
 Executive Chairman
 P: +44 (0) 7881825378
 E: dlenigas@riversgold.com.au

Ed Mead
 Director
 P: 0407 445351
 E: emead@riversgold.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on information compiled by Mr Edward Mead, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Mead is a director of Riversgold Ltd and a consultant to the Company through Doraleda Pty Ltd. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report. Prior exploration results were reported in accordance with ASX Listing Rule 5.7 on 9 May 2023, 12 December 2023, 11 July 2024, 17 July 2024, 27 August 2024, 18 September 2024, 25 September 2024, 19 November 2024, 26 November 2024, 4 December 2024, 19 March 2025, 3 April 2025, 11 April 2025, 23 April 2025 and 26 November 2025.

APPENDIX 1: Drilling Information

Table 1: Northern Zone significant intercepts from all 2025 grade control drill rig drillholes and extensional drillholes with previously reported results in grey.

Hole ID	From (m)	To (m)	Width (m)	Au g/t	Intercept
NZAC146	56	65	9	1.33	9m @ 1.33 g/t Au from 56m , NZAC146
NZAC149	45	48	3	4.39	3m @ 4.39 g/t Au from 45m , NZAC149
including	47	48	1	0.93	Including 1m @ 11.78 g/t Au from 47m , NZAC149
NZAC150	48	51	3	1.89	3m @ 1.89 g/t Au from 48m , NZAC150
NZAC150	61	66	5	1.75	5m @ 1.75 g/t Au from 61m (EOH) , NZAC150
including	64	66	2	3.49	Including 2m @ 3.49 g/t Au from 64m (EOH) , NZAC150
NZAC151	47	51	4	0.83	4m @ 0.83 g/t Au from 47m , NZAC151
NZAC152	47	52	5	3.09	5m @ 3.09 g/t Au from 47m, NZAC152
NZAC152	66	72	6	0.72	6m @ 0.72 g/t Au from 66m (EOH), NZAC152
NZAC153	32	38	6	0.65	6m @ 0.65 g/t Au from 32m, NZAC153
NZAC153	46	47	1	11	1m @ 11.0 g/t Au from 46m, NZAC153
NZAC153	54	56	2	0.74	2m @ 0.74 g/t Au from 54m, NZAC153
NZAC154	62	70	8	0.62	8m @ 0.62 g/t Au from 32m, NZAC154
NZAC154	45	46	1	1.1	1m @ 1.10 g/t Au from 45m, NZAC154
NZAC155	49	51	2	1.47	2m @ 1.47 g/t Au from 49m, NZAC155
NZAC156	42	49	7	1.58	7m @ 1.58 g/t Au from 42m, NZAC156
NZAC157	33	36	3	0.7	3m @ 0.70 g/t Au from 33m, NZAC157
NZAC157	44	46	2	1.32	2m @ 1.32 g/t Au from 44m, NZAC157
NZAC158	38	40	2	0.98	2m @ 0.98 g/t Au from 38m, NZAC158
NZAC159	39	40	1	1.01	1m @ 1.01 g/t Au from 39m, NZAC159
NZAC159	61	62	1	1.26	1m @ 1.26 g/t Au from 61m, NZAC159 (EOH)
NZAC160	39	45	6	1.61	6m @ 1.61 g/t Au from 39m, NZAC160
NZAC160	60	61	1	1.83	1m @ 1.83 g/t Au from 60m, NZAC160 (EOH)
NZAC161	34	35	1	0.99	1m @ 0.99g/t Au from 34m, NZAC161
NZAC162					No significant Intercept
NZAC163					No significant Intercept
NZAC164					No significant Intercept
NZAC165					No significant Intercept
NZAC166					No significant Intercept
NZAC167					No significant Intercept
NZAC168	44	45	1	2.10	1m @ 2.10 g/t Au from 44m, NZAC168
NZAC170	41	46	5	3.13	5m @ 3.13 g/t Au from 41m, NZAC170
NZAC170	77	78	1	2.94	1m @ 2.94 g/t Au from 77m, NZAC170
NZAC170	94	95	1	1.96	1m @ 1.96 g/t Au from 94m, NZAC170
NZAC171	50	53	3	1.31	3m @ 1.31 g/t Au from 50m, NZAC171
NZAC172	36	38	2	0.97	2m @ 0.97 g/t Au from 36m, NZAC172
NZAC172	42	43	1	2.10	1m @ 2.10 g/t Au from 42m, NZAC172
NZAC172	61	63	2	1.79	2m @ 1.79 g/t Au from 61m, NZAC172
NZAC173					No significant Intercept
NZAC174	46	47	1	4.15	1m @ 4.15 g/t Au from 46m, NZAC174

Hole ID	From (m)	To (m)	Width (m)	Au g/t	Intercept
NZAC174	54	58	4	4.09	4m @ 4.09 g/t Au from 54m, NZAC174
NZAC175					No significant Intercept
NZAC176	43	44	1	1.06	1m @ 1.06 g/t Au from 43m, NZAC176
NZAC177					No significant Intercept
NZAC178	43	44	1	4.82	1m @ 4.82 g/t Au from 43m, NZAC178
NZAC179	46	54	8	5.81	8m @ 5.81 g/t Au from 46m, NZAC179
NZAC180					No significant Intercept
NZAC181	48	55	7	3.48	7m @ 3.48 g/t Au from 48m, NZAC181
NZAC182	43	47	4	2.28	4m @ 2.28 g/t Au from 43m, NZAC182
NZAC183					No significant Intercept
NZAC184					No significant Intercept
NZAC185					No significant Intercept
NZAC186					No significant Intercept
NZAC187					No significant Intercept
NZAC188	44	52	8	1.23	8m @ 1.23 g/t Au from 44m, NZAC188
NZAC189					No significant Intercept
NZAC190					No significant Intercept
NZAC191					No significant Intercept
NZAC192					No significant Intercept
NZAC193					No significant Intercept
NZAC194					No significant Intercept

Table 2: Northern Zone Drill Collar Locations

Hole ID	Type	MGA_E	MGA_N	Elevation (m)	Total Depth (m)	Dip (°)	AZM_MGA	Date
NZAC146	GC	381899.8	6592682.5	356.7	66	0	-90	20/10/25
NZAC147	GC	381912.2	6592694.9	356.8	63	0	-90	21/10/25
NZAC148	GC	381919.8	6592682.5	356.7	66	0	-90	22/10/25
NZAC149	GC	381932.2	6592694.9	356.8	60	0	-90	22/10/25
NZAC150	GC	381939.8	6592682.5	356.8	66	0	-90	23/10/25
NZAC151	GC	381952.2	6592694.9	356.7	66	0	-90	23/10/25
NZAC152	GC	381959.8	6592682.5	356.7	72	0	-90	24/10/2025
NZAC153	GC	381702.7	6592645.4	356.4	66	0	-90	25/10/2025
NZAC154	GC	381690.3	6592633	356.4	64	0	-90	25/10/2025
NZAC155	GC	381698	6592620.6	356.3	60	0	-90	25/10/2025
NZAC156	GC	381705.6	6592608.2	356.2	63	0	-90	26/10/2025
NZAC157	GC	381681	6592608.2	356.3	62	0	-90	26/10/2025
NZAC158	GC	381673.2	6592595.9	356.3	61	0	-90	27/10/2025
NZAC159	GC	381680.8	6592583.5	356.2	62	0	-90	28/10/2025
NZAC160	GC	381695	6592592	356.2	61	0	-90	29/10/2025
NZAC161	GC	381643.7	6592546.4	356.2	65	0	-90	30/10/2025
NZAC162	GC	381651.3	6592534	356.2	69	0	-90	30/10/2025
NZAC163	GC	381663.7	6592546.4	356.1	68	0	-90	31/10/2025
NZAC164	GC	381671.3	6592534	356.1	63	0	-90	31/10/2025
NZAC165	GC	381676.1	6592558.7	356.1	66	0	-90	1/11/2025

Hole ID	Type	MGA_E	MGA_N	Elevation (m)	Total Depth (m)	Dip (°)	AZM_MGA	Date
NZAC166	GC	381668.5	6592569	356.1	62	0	-90	1/11/2025
NZAC167	AC	381782.8	6592917.7	357.2	38	0	-90	17/11/2025
NZAC168	AC	381795.1	6592929.9	356.8	63	0	-90	17/11/2025
NZAC169	AC	381807.6	6592942.4	356.5	75	0	-90	18/11/2025
NZAC170	AC	381858.8	6592965.4	356.5	99	0	-90	18/11/2025
NZAC171	AC	381846.5	6592953	356.5	72	0	-90	18/11/2025
NZAC172	AC	381834.3	6592940.9	356.6	88	0	-90	19/11/2025
NZAC179	AC	381712	6592632	356.3	62	0	-90	24/11/2025
NZAC180	AC	381720	6592658	356.5	60	0	-90	24/11/2025
NZAC181	AC	381725	6592646	356.4	62	0	-90	25/11/2025
NZAC182	AC	381739	6592658	356.5	69	0	-90	25/11/2025
NZAC183	AC	381752	6592675	356.6	71	0	-90	26/11/2025
NZAC184	AC	381733	6592673	356.5	65	0	-90	26/11/2025
NZAC173	AC	381784.6	6592891.2	357.5	59	0	-90	21/11/2025
NZAC174	AC	381810.9	6592889.1	357.4	71	0	-90	21/11/2025
NZAC175	AC	381840.8	6592860.7	357.1	71	0	-90	21/11/2025
NZAC176	AC	381851.5	6592873.2	357.1	81	0	-90	22/11/2025
NZAC177	AC	381863.9	6592885.6	357.2	77	0	-90	23/11/2025
NZAC178	AC	381876.3	6592898	357.3	58	0	-90	24/11/2025
NZAC185	AC	381750	6592686	356.6	68	0	-90	27/11/2025
NZAC186	AC	381714	6592674	356.6	66	0	-90	27/11/2025
NZAC187	AC	381729	6592687	356.6	37	0	-90	27/11/2025
NZAC188	AC	381709	6592688	356.5	63	0	-90	28/11/2025
NZAC189	AC	381723	6592701	356.6	51	0	-90	29/11/2025
NZAC190	AC	381742	6592701	356.6	60	0	-90	29/11/2025
NZAC191	AC	381689	6592567	356.1	62	0	-90	29/11/2025
NZAC192	AC	381696	6592555	356	62	0	-90	29/11/2025
NZAC193	AC	381654	6592558	356.2	65	0	-90	30/11/2025
NZAC194	AC	381683	6592545	356.1	62	0	-90	1/12/2025

Table 3: Northern Zone assay results above 0.3 g/t Au

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC146	56	57	1	3.46
NZAC146	57	58	1	1.71
NZAC146	58	59	1	1.5
NZAC146	59	60	1	1.39
NZAC146	60	61	1	0.76
NZAC146	62	63	1	1.01
NZAC146	63	64	1	1.28
NZAC146	64	65	1	0.65
NZAC148	47	48	1	0.44
NZAC148	60	61	1	0.43
NZAC149	42	43	1	0.98
NZAC149	45	46	1	1.35
NZAC149	47	48	1	11.78
NZAC150	48	49	1	2.04

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC150	49	50	1	3.33
NZAC150	50	51	1	0.3
NZAC150	61	62	1	0.5
NZAC150	62	63	1	0.66
NZAC150	63	64	1	0.59
NZAC150	64	65	1	4.26
NZAC150	65	66	1	2.72
NZAC151	47	48	1	2.01
NZAC151	48	49	1	0.52
NZAC151	50	51	1	0.59
NZAC152	67	68	1	0.69
NZAC152	68	69	1	0.37
NZAC152	69	70	1	0.49
NZAC152	70	71	1	1.47

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC152	71	72	1	0.91
NZAC153	32	33	1	0.46
NZAC153	34	35	1	0.3
NZAC153	37	38	1	2.9
NZAC153	46	47	1	11
NZAC153	54	55	1	0.97
NZAC153	55	56	1	0.51
NZAC153	60	61	1	0.33
NZAC154	32	33	1	0.31
NZAC154	34	35	1	0.66
NZAC154	35	36	1	2.14
NZAC154	37	38	1	0.4
NZAC154	39	40	1	1.16
NZAC154	45	46	1	1.1
NZAC155	31	32	1	0.82
NZAC155	40	41	1	0.66
NZAC155	49	50	1	1.94
NZAC155	50	51	1	1
NZAC155	53	54	1	0.35
NZAC156	32	33	1	0.41
NZAC156	42	43	1	1.88
NZAC156	43	44	1	0.45
NZAC156	45	46	1	6.43
NZAC156	46	47	1	1.74
NZAC156	48	49	1	0.42
NZAC157	33	34	1	0.35
NZAC157	34	35	1	1.05
NZAC157	35	36	1	0.7
NZAC157	44	45	1	2.34
NZAC157	45	46	1	0.3
NZAC158	34	35		0.33
NZAC158	38	39		0.65
NZAC158	39	40		1.3
NZAC159	34	35		0.56
NZAC159	39	40		1.01
NZAC159	49	50		0.52
NZAC159	61	62		1.26
NZAC160	35	36		0.75
NZAC160	39	40		0.44
NZAC160	40	41		3.44
NZAC160	44	45		2.81
NZAC160	60	61		1.83
NZAC161	27	28		0.46
NZAC161	28	29		0.56

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC161	34	35		0.99
NZAC161	42	43		0.36
NZAC161	27	28	1	0.46
NZAC161	28	29	1	0.56
NZAC161	34	35	1	0.99
NZAC161	42	43	1	0.36
NZAC163	35	36	1	0.41
NZAC164	42	43	1	0.31
NZAC165	36	37	1	0.33
NZAC165	40	41	1	0.79
NZAC166	35	36	1	0.39
NZAC166	38	39	1	0.62
NZAC166	60	61	1	0.33
NZAC166	61	62	1	0.33
NZAC168	27	28	1	0.54
NZAC168	44	45	1	2.10
NZAC169	35	36	1	0.31
NZAC170	41	42	1	0.35
NZAC170	42	43	1	3.38
NZAC170	44	45	1	9.86
NZAC170	45	46	1	2.03
NZAC170	77	78	1	2.94
NZAC170	88	89	1	0.30
NZAC170	89	90	1	0.39
NZAC170	93	94	1	0.39
NZAC170	94	95	1	1.96
NZAC170	97	98	1	0.43
NZAC171	40	41	1	1.25
NZAC171	41	42	1	1.50
NZAC171	42	43	1	1.19
NZAC171	45	46	1	0.37
NZAC171	65	66	1	0.53
NZAC171	67	68	1	0.36
NZAC172	36	37	1	0.98
NZAC172	37	38	1	0.95
NZAC172	40	41	1	0.30
NZAC172	42	43	1	2.10
NZAC172	61	62	1	3.21
NZAC172	62	63	1	0.36
NZAC172	86	87	1	0.44
NZAC179	39	40	1	0.30
NZAC179	41	42	1	0.42
NZAC179	46	47	1	14.67
NZAC179	47	48	1	0.95

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC179	49	50	1	0.46
NZAC179	50	51	1	15.35
NZAC179	51	52	1	12.48
NZAC179	52	53	1	1.17
NZAC179	53	54	1	1.17
NZAC179	57	58	1	0.46
NZAC180	42	43	1	0.33
NZAC180	43	44	1	0.37
NZAC181	48	49	1	16.74
NZAC181	49	50	1	1.18
NZAC181	50	51	1	1.53
NZAC181	51	52	1	0.91
NZAC181	54	55	1	3.55
NZAC182	43	44	1	1.25
NZAC182	44	45	1	2.97
NZAC182	46	47	1	1.14
NZAC184	42	43	1	0.72
NZAC173	36	37	1	0.61
NZAC173	57	58	1	0.37
NZAC174	46	47	1	4.15
NZAC174	54	55	1	15.49
NZAC174	56	57	1	0.31
NZAC174	57	58	1	0.47
NZAC174	68	69	1	0.40

Hole ID	Depth From	Depth To	Width	Au ppm
NZAC175	34	35	1	0.33
NZAC175	44	45	1	0.79
NZAC176	43	44	1	1.06
NZAC177	68	69	1	0.58
NZAC177	71	72	1	0.32
NZAC177	75	76	1	0.70
NZAC177	76	77	1	0.45
NZAC178	40	41	1	0.41
NZAC178	43	44	1	4.82
NZAC186	37	38	1	0.66
NZAC186	38	39	1	0.42
NZAC188	44	45	1	8.19
NZAC188	50	51	1	0.74
NZAC188	51	52	1	0.46
NZAC189	39	40	1	0.82
NZAC191	35	36	1	0.30
NZAC191	40	41	1	0.85
NZAC192	39	40	1	0.94
NZAC193	36	37	1	0.30
NZAC193	37	38	1	0.59
NZAC193	41	42	1	0.35
NZAC194	40	41	1	0.97
NZAC194	42	43	1	0.79

APPENDIX 2: JORC INFORMATION

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at Northern Zone.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>Every metre drilled was placed on the ground. 6m composites were collected using a scoop method of sampling the coarse reject sample for the first 24m. 1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples.</p> <p>Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals. Samples were sent to the laboratory for crushing, splitting and analysis.</p> <p>Analysis was undertaken by Jinnings laboratories (Kalgoorlie) for gold assay by 50g fire assay.</p>
Drilling techniques	<p><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Australian Surface Drilling completed the program using a face sampling hammer on an Atlas Copco grade control rig.</p>
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<p>Drill recovery was routinely recorded via estimation of the comparative percentage of the volume of the sample bag by the company geologist.</p> <p>The sample recovery was deemed excellent for representative assays.</p> <p>The cyclone was cleaned or checked every 6m.</p>
Logging	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p> <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i></p> <p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p>All holes have been geologically logged for lithology, mineralisation and weathering. As well as whether dry, damp or wet.</p> <p>Logging is quantitative for presence of quartz veins. All other logging is qualitative.</p> <p>A brief description of each drilling sample was recorded and a permanent record has been collected and stored in chip trays for reference.</p>
Sub-sampling techniques and sample preparation	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples.</p> <p>Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals.</p> <p>Samples were sent to the laboratory for crushing, splitting and analysis.</p> <p>The use of fire assay with 50g charge for all AC drilling provides a level of confidence in the assay database. The sampling and assaying are considered representative of the in-situ material.</p> <p>The sample size of 2-3 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.</p>

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p> <p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i></p>	Jinnings (Kalgoorlie) were used for all analysis of drill samples submitted by Riversgold. The laboratory techniques below are for all samples submitted to Jinnings and are considered appropriate for the style of mineralisation defined within the Northern Zone Project area: Samples above 3Kg were riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (FA50A) – Au Duplicates, Standards and Blanks were used for external laboratory checks by RGL
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p> <p><i>Discuss any adjustment to assay data.</i></p>	Intercepts were reviewed by 2 company personnel.
Location of data points	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Specification of the grid system used.</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	The collar position of each hole has been marked out with a Garmin Inreach Explorer+ hand held GPS, and will be picked up by Spectrum Surveys (Kalgoorlie) using a DGPS.
Data spacing and distribution	<p><i>Data spacing for reporting of Exploration Results.</i></p> <p><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i></p> <p><i>Whether sample compositing has been applied.</i></p>	The holes were drilled on a nominal Northeast-Southwest 20m spacing on traverses 15-20m apart.
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p> <p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	Based on logging of diamond core the drill holes appear to be orientated perpendicular to strike and dip of the main mineralised structures. An interpreted fault though the middle of the mineralisation may have caused some displacement.
Sample security	<i>The measures taken to ensure sample security.</i>	Company personnel delivered samples to Jinnings Kalgoorlie where they were submitted for assay.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	Data reviews will be conducted on completion of further drilling

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	The Northern Zone Project is comprised of one granted prospecting licence (P25/2651) which covers an area of 82 hectares, and is held in the name of Riversgold (Australia) Pty Ltd 80/100, Oracle Gold (WA) Pty Ltd 20/100. The JV documents are to be formalised by December 2025. Oracle will be required to contribute pro-rata or dilute.
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	The majority of previous exploration in the area was by Northern Mining during 2007 to 2012 under the Blair North project, multiple small resource areas were identified at the George's Reward area to the south of P25/2651. Numerous gold intersections were recorded.
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	The deposit sought is (Intrusion Related Gold System (IRGS) style of mineral deposit. Northern Zone is hosted within a porphyry unit (Tonalite-

Criteria	JORC Code explanation	Commentary
		Trondhjemite Intrusion, TTI), with high background gold and horizontal gold mineralised units within the TTI unit. The Northern Zone Project sits within the Canon Shear or fault zone, with further drilling required to define the limits of mineralisation identified to date.
Drill hole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	Refer to Tables and Figures within the body and appendices of the release.
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p> <p><i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p> <p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	Intersections are weighted average grades based on a 0.001 g/t Au cut-off with unlimited waste zones but with a targeted grade of 0.4-0.6g/t Au.
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i></p>	The diamond drilling program in 2023 confirmed the apparent widths of mineralisation as being perpendicular to foliation and veining. Step out RC drilling to be the same as the diamond drilling. Mineralisation has been determined from structural logging to be horizontal and vertical drilling is therefore true width drilling.
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i></p>	See body of the announcement for relevant diagrams and photos.
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i></p>	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	See body of the announcement.
Further work	<p><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<ul style="list-style-type: none"> • Follow up phases of drilling to further test strike to be undertaken. • Complete a maiden MRE